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ABSTRACT Objective: Microarray and RNA sequencing (RNA-

Seq) technologies are frequently employed in genetic data analysis 

for detecting disease-associated genes, identifying cancer subtypes, 
and enabling molecular diagnosis. While numerous methods have 

been proposed for classification problems using microarray data, 

there is a paucity of developed methods for classifying RNA-Seq 
data. This study aims to compare the performance of novel methods 

developed for RNA-Seq data on 3 distinct real-life datasets. Mate-

rial and Methods: Cervical cancer, Alzheimer’s disease, and kid-
ney cancer RNA-Seq data were utilized in this study. The data were 

divided into training and test sets in a %70 and %30 ratio, respec-

tively. Various preprocessing steps, such as normalization, power 
transformation, and variance filtering, were applied to the data. The 

Poisson Linear Discriminant Analysis (PLDA) and Negative Bino-

mial Linear Discriminant Analysis (NBLDA) models were used for 
classification purposes, and the predictive performances of these 

models were compared. Results: Among the three datasets, the 

Alzheimer’s data exhibited the lowest level of dispersion, while the 
cervical cancer data had the highest overdispersion. The NBLDA 

model demonstrated superior classification performance compared 

to the PLDA model. In cases of mild-to-moderate overdispersion, 
the predictive performance of the PLDA model improved when 

power transformation was applied, resulting in performance similar 

to that of the NBLDA model. Conclusion: PLDA and NBLDA 
models are two novel and promising techniques used in classifying 

RNA-Seq data. The performance of these models is influenced by 

the degree of overdispersion. In cases of high overdispersion, it is 
recommended to utilize the NBLDA model. 
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ÖZET Amaç: Mikrodizi ve RNA dizileme teknolojileri, genetik 

çalışmalarda hastalıkla ilişkili genlerin tespiti, kanser alt tiplerinin 

belirlenmesi, moleküler teşhis gibi amaçlar için sıklıkla kullanılan 
yöntemlerdir. Mikrodizi verilerinde sınıflama problemleri için lite-

ratürde birçok yöntem önerilmiştir. Bununla birlikte RNA dizileme 

verilerinde sınıflama problemleri için sınırlı sayıda yöntem bulun-
maktadır. Bu çalışma, RNA dizileme verileri için geliştirilen yeni 

yöntemlerin performansını 3 farklı gerçek veri seti üzerinde karşı-

laştırmayı amaçlamaktadır. Gereç ve Yöntemler: Bu çalışmada, 
serviks kanseri, Alzheimer hastalığı ve böbrek kanseri RNA dizi-

leme verileri kullanılmıştır. Veriler, sırasıyla %70 ve %30 oranında 

eğitim ve test kümelerine ayrılmıştır. Normalizasyon, güç dönüşü-
mü ve varyans filtreleme gibi çeşitli ön işlemlerden sonra veriler, 

Poisson Doğrusal Ayırma Analizi (PDAA) ve Negatif Binom Doğ-

rusal Ayırma Analizi (NBDAA) modelleri kullanılarak modellen-
miş ve modellerin tahmin performansları karşılaştırılmıştır. Bulgu-

lar: Üç veri seti arasında Alzheimer verisi en düşük, serviks kanseri 

verisi ise en yüksek aşırı dağılıma sahipti. NBDAA modeli, PDAA 
modeline göre daha iyi sınıflandırma performansı göstermiştir. Ha-

fif-orta derecede aşırı dağılım gözlendiği durumlarda, PDAA mode-

linin tahmin performansı güç dönüşümü uygulandığında iyileşmiş 
ve NBDAA ile benzer performans elde edilmiştir. Sonuç: PDAA 

ve NBDAA modelleri, RNA dizileme verilerinin sınıflandırılma-

sında kullanılan yeni ve umut verici tekniklerdir. Bu modellerin 
performansı, veri setindeki aşırı yaygınlığın derecesinden etkilen-

mektedir. Veride yüksek aşırı yaygınlık olması durumunda 

NBDAA modelinin kullanılması önerilmektedir. 
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Gene-expression-based studies hold significant importance in molecular biology, as they allow for the 

examination of transcriptional activities across different tissue samples or cell populations.
1
 Over the past 2 

decades, extensive literature has focused on evaluating the impact of transcriptional expression patterns on 

specific conditions, such as biological conditions and tumor subtypes.
2
 Two high-throughput technologies, 

microarray and next-generation sequencing (NGS), play a crucial role in quantifying gene expression. 

Among these, RNA sequencing (RNA-Seq) utilizes the capabilities of NGS technology to characterize and 

quantify gene expression.
3
 Recent advancements have made it feasible to simultaneously examine the ex-

pression levels of thousands of genes, leading researchers to concentrate on multiple analysis tasks such as 

class discovery, class comparison, and class prediction. Although both microarray and RNA-Seq techniques 

provide expression levels of thousands of genes simultaneously, RNA-Seq has emerged as the state-of-the-

art approach in such analysis tasks due to its major advantages.
4
  

In the early stages, gene expression data from microarray technology played a pivotal role in the mo-

lecular diagnosis of diseases. Thanks to the continuous nature of microarray data, it became feasible to em-

ploy classical machine learning algorithms with minor modifications to the algorithm or preprocessing of the 

gene expression data, such as normalization and/or transformation.
5
 However, when it comes to the utiliza-

tion of RNA-Seq data in classification problems, it is necessary to take into consideration additional analysis 

steps because the algorithms proposed for microarray data are not directly applicable to RNA-Seq data due 

to the underlying discrete distribution. 

In classification studies of RNA-Seq data, 2 strategies are available: proposing a novel algorithm based 

on discrete distributions, such as negative binomial (NB) and Poisson, and transforming the data to make it 

distributionally closer to microarrays, then applying microarray-based algorithms.
4-8

 Preferring the latter 

strategy to enable numerous classical machine learning algorithms may initially appear reasonable. How-

ever, the transformation of discrete data into a continuous space can result in a substantial loss of informa-

tion, thereby potentially leading to biased conclusions. Therefore, employing novel classifiers based on dis-

crete distributions may be more suitable for conducting such studies. 

Numerous algorithms have been developed or adapted for classification tasks in gene expression stud-

ies, with each performing well under specific conditions such as the underlying probability distribution (i.e., 

continuous or discrete), data structure, and dimensionality (i.e., low or high dimensional in terms of the 

number of samples and/or features). In recent years, considerable effort has been devoted to the examination 

of differential expression and classification analysis of RNA-Seq data.
9-11

 Although differential expression 

and classification analyses are crucial in understanding gene expression data, advancements specific to the 

classification of RNA-Seq data have been relatively limited until recently. Two prominent and contemporary 

techniques employed in the classification of RNA-Seq data are Poisson Linear Discriminant Analysis 

(PLDA), proposed by Witten, and Negative Binomial Linear Discriminant Analysis (NBLDA), introduced 

by Dong et al.
4,7

  

This study aimed to employ PLDA and NBLDA techniques for the classification of RNA-Seq data, util-

izing three real-life genomic datasets. The primary objective was to compare the predictive accuracy of the 

aforementioned methods. Furthermore, this study sought to investigate potential differences between the 2 in 

the presence of overdispersion and high dimensionality, thereby illuminating their respective strengths and 

weaknesses in making predictions. By conducting this analysis, we aim to provide valuable insights into the 

performance and applicability of PLDA and NBLDA in the classification of RNA-Seq data, offering re-

searchers a better understanding of their suitability for different scenarios. 

    MATERIAL AND METHODS 

Let                               represent a matrix with dimensions p-by-n that encompasses the gene 

expression data obtained through RNA-sequencing technology. In this matrix, the columns correspond to 
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samples, while the rows represent features. The RNA-sequencing process generates mapped read counts    , 

which are presumed to correlate with the gene expression levels. However, these counts depend not only on 

the gene expression level but also on factors such as sequencing depth, gene length, and the quality of se-

quences. Therefore, raw counts cannot be directly utilized as an accurate measure of gene expression level 

unless they undergo preprocessing for downstream analysis. Figure 1 shows the detailed workflow of the 

analysis steps. 

 

 

FIGURE 1: Workflow of RNA-sequencing data classification. 

PLDA/sPLDA: Poisson Linear Discriminant Analysis/Sparse PLDA; NBLDA: Negative Binomial Linear Discriminant Analysis. 

 

In the classification of RNA-sequencing data, the dataset was partitioned into training and testing sets 

using a split ratio of 70% and 30%, respectively. Subsequently, a series of pre-filtering procedures, such as 

near-zero filtering and variance filtering, was implemented on the raw counts to eliminate genes with low 

read counts and/or poor sequencing quality. Following this, a normalization step was applied to the pre-

filtered raw counts before downstream analysis to remove the effect of sequencing depth, technical variation, 

and possible bias while preserving the biological variations between samples. Several normalization tech-

niques have been proposed to address variations between samples.
12

 In our study, we utilized the DESeq me-

dian ratio normalization method to normalize the raw counts while fitting data to PLDA and NBLDA as de-

tailed in subsections 2.1 and 2.2.
11

 This normalization method is known to be robust against outliers and ef-
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fectively remove technical variation and bias in the raw data. The size factors are estimated by    

      
 
    where    is defined as:  

          
   

  
 
      

                  

 

   

 

   

 (1) 

 

Here,    is the geometric mean of read counts for i-th feature and    is calculated by using the features 

having nonzero geometric mean. Additionally, we applied a power transformation, as proposed by Witten, to 

mitigate overdispersion when the data exhibit slight or moderate overdispersion.
4
 Finally, the pre-filtered, 

normalized, and transformed data were fitted to the PLDA and NBLDA models with and without power 

transformation. The power-transformed models were denoted as PLDA2, sparse PLDA (sPLDA2), and 

NBLDA2 in the results section. 

The predictive accuracy of these methods was calculated using independent testing sets. We should note 

that the predictive accuracy of fitted models may significantly change depending on the training and testing 

set samples. Therefore, the analysis steps outlined in Figure 1 were repeated 100 times for each RNA-Seq 

data to enhance the generalizability of our findings, measure the variation in classification accuracies across 

multiple experiments, and provide more reliable results while mitigating the risk of overfitting. We evaluated 

the fitted models using averaged accuracies and standard deviations over 100 repetitions. All analyses were 

executed utilizing the MLSeq package within the R/Bioconductor
1
 network and the NBLDA package within 

the CRAN
2
 network.

6 

PLDA 

The Poisson distribution is commonly employed for modeling count data, such as in RNA-sequencing. Wit-

ten introduced a log-linear model, based on the Poisson distribution, for mapped read counts, expressed as 

follows:
4 

                                                     (2) 
 

Here,    denotes the size factor of the j-th sample and    represents the gene length of the i-th feature. 

Moreover,     serves as a class-specific offset parameter that enables the interpretation of the extent to 

which the observed counts of the i-th gene differ from the expected (or baseline) counts for the k-th class. 

Let       
     

      
   denote the observed mapped reads, and let    represent the unknown true class 

of a test sample. The class of the test sample can be predicted using the fitted model in equation 1. By apply-

ing Bayes’ rule, we can calculate the posterior probabilities for each class as follows: 

                 
      

where    represents the prior probability for the k-th class, and       is the probability density function. To 

obtain the discrimination function, we incorporate a Poisson distribution into      , resulting in: 

                         
            

    
 

 

   

          
     

 

   

             
  

(3) 

The estimated offset parameter       possesses a straightforward and valuable interpretation: the i-th 

gene is down-regulated if        or up-regulated if        for class k. If the      estimates equal 1 for all 

                                                           
1 https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html 
2 https://cran.rstudio.com/web/packages/NBLDA/index.html 
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classes, it can be assumed that the i-th gene is unrelated to the disease. Consequently, it can be removed from 

the model since the observed counts of the i-th gene do not contribute to the discrimination score in equation 

3. This property endows PLDA with sparsity, achieved by selecting the features through      that contribute 

to the discrimination score. 

NBLDA 

The NB distribution is an extension of the Poisson distribution that accounts for overdispersion in data, 

characterized by a larger variance than the mean. Likewise the Poisson model, let     denote a random variable 

representing observed read counts. The fitted NB model, proposed by Dong et al. can be expressed as:
7 

                                                   (4) 

where    represents the estimated overdispersion parameter obtained through the relationship between the 

mean and variance, given by                 
   . Finally, employing the NB probability density 

function and applying Bayes’ rule, we derive the discrimination function as follows: 

                        
            

    
 

 

   

                          

                                              
                 

 

   

           

(5) 

where         
        . It is evident from the discrimination score that the estimated dispersion parameter     

exerts an influence on the model. In contrast to the Poisson model, a feature with a non-zero dispersion value 

(i.e.,      ) is included in the model, even if it does not exhibit differential expression across classes, that 

is,         for all            . Consequently, the NBLDA algorithm does not function as a sparse 

classifier, encompassing all the features within the model. Furthermore, we observe that the NBLDA model 

converges to the PLDA model as     . 

RNA-SEQ DATASETS 

We conducted classification analyses on three distinct RNA-Seq datasets, which are publicly available 

through references: cervical cancer data, Alzheimer’s disease data, and renal cell carcinoma (RCC) data 

obtained from The Cancer Genome Atlas (TCGA).
13-15

 It is important to note that the present study is a 

methodological investigation, and the datasets employed are publicly accessible via databases or articles. As 

a result, obtaining approval from a Local Ethics Committee is not necessary for the utilization of these 

specific datasets in this study. 

The cervical cancer dataset consisted of miRNA-Seq data from 58 human cervical tissue samples, 

including 29 tumor samples and 29 matched control samples. The Solexa/Illumina platform was utilized for 

the sequencing process, and a total of 714 miRNAs were investigated in this study. 

The Alzheimer’s disease dataset comprised sequencing reads of 2,801 miRNAs extracted from blood 

samples of 48 Alzheimer’s patients and 22 age-matched control subjects.  

Lastly, the RCC dataset downloaded from TCGA encompassed sequencing reads of 20,531 known 

human RNAs derived from 1,020 RCC patients. These patients were categorized into the three most 

prevalent subcategories: kidney renal papillary cell, kidney renal clear cell, and kidney chromophobe 

carcinomas, with sample sizes of 606, 323, and 91, respectively. 
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    RESULTS 

We have presented the pre-processing and testing set classification results for 3 real-life RNA-sequencing 

datasets in Table 1. The upper part of this table provides an overview of the pre-processing results applied to 

the datasets during the training process. Additionally, the lower part of Table 1 displays the classification 

results of the fitted models on the testing set. While training the models, the pre-filtering step has eliminated 

a substantial proportion of features in the datasets related to cervical cancer and Alzheimer’s disease, 

resulting in the exclusion of 36.2% and 77.3% of all features on average, respectively. Due to the high 

dimensionality and computational complexity, we maintained the number of features in the RCC dataset at a 

constant value of 2000, which were selected through maximum variance filtering (Table 1). Furthermore, 

Figure 2 illustrates the estimates of gene-wise overdispersion, which were obtained from the normalized 

counts. The percentage of features in each dataset with overdispersion estimates exceeding 1, indicating high 

overdispersion, was calculated. The results reveal that 89.1%, 22.1%, and 41.8% of all features exhibit 

highly overdispersed read counts in the cervical cancer, Alzheimer’s disease, and RCC datasets, respectively. 

Therefore, the cervical cancer data showed the highest overdispersion, while the Alzheimer’s disease data 

showed the least. 

 

TABLE 1: Classification results in testing set for real-life RNA-sequencing data. 
 

 Cervical Alzheimer Kidney 

Number of features       

Raw data 714 2801 20531 

Pre-filtered (average) 455.2 634 2000 

Class sizes 29/29 22/48 91/323/602 

Class ratios 1:1 1:2.18 1:3.55:6.62 

Models* Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity 

PLDA 0.8759  0.4880  0.8630  

PLDA2 0.9253  0.7620  0.8778  

sPLDA 0.8729 1.000 0.4860 1.000 0.8619 1.000 

sPLDA2 0.9094 0.299 0.7620 1.000 0.8778 1.000 

NBLDA 0.9400  0.7930  0.8997  

NBLDA2 0.9493  0.7970  0.9045  
 

Lower part represents the model accuracies in the testing set. 

*The suffix ‘2’ stands for the power transformation; PLDA/sPLDA: Poisson Linear Discriminant Analysis/Sparse PLDA; NBLDA: Negative Binomial Linear 

Discriminant Analysis. 

 

 

FIGURE 2: Gene-wise overdispersion estimates. 
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Classification results of PLDA and NBLDA models with and without transformation were graphically 

presented in Figures 3, Figure 4 and Figure 5. The prediction accuracies clearly demonstrate the significant 

impact of overdispersion on the model performances. Across all datasets, the NBLDA and NBLDA2 models 

consistently outperformed the others. 

 

 
 

FIGURE 3: Prediction accuracy of fitted models for cervical cancer data. 

NBLDA: Negative Binomial Linear Discriminant Analysis; PLDA/sPLDA: Poisson Linear Discriminant Analysis/Sparse PLDA. 

 

 
 

FIGURE 4: Prediction accuracy of fitted models for Alzheimer disease data. 

NBLDA: Negative Binomial Linear Discriminant Analysis; PLDA/sPLDA: Poisson Linear Discriminant Analysis/Sparse PLDA 
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FIGURE 5: Prediction accuracy of fitted models for kidney cancer data. 

NBLDA: Negative Binomial Linear Discriminant Analysis; PLDA/sPLDA: Poisson Linear Discriminant Analysis/Sparse PLDA. 

 

 

In the cervical cancer dataset, characterized by the highest degree of overdispersion, the prediction 

accuracies were generally above 0.9 (Figure 3). Notably, the classification accuracies of both PLDA and 

NBLDA classifiers improved when power transformation was applied to the normalized counts. However, 

the influence of power transformation was more pronounced in the PLDA compared to NBLDA. 

Furthermore, the sPLDA model failed to select a subset of features using its built-in feature selection 

algorithm. However, after the application of power transformation, the sPLDA2 model achieved a prediction 

accuracy above 0.9, including only 30% of the available features. 

The classification results for the data on Alzheimer’s disease are presented in Figure 4. Despite being 

the least overdispersed dataset among the others, the PLDA classifier yielded the lowest classification 

accuracy unless a power transformation was applied. Upon performing the power transformation, both the 

PLDA and NBLDA classifiers demonstrated similar performance, achieving a prediction accuracy slightly 

above 0.75. Conversely, in the case of cervical cancer data, the sparse PLDA classifier failed to select a 

subset of features regardless of whether a power transformation was applied or not. 

Finally, we have presented the classification accuracy for the RCC dataset in Figure 5. Similarly, as 

observed in the other datasets, NBLDA classifiers demonstrated better performance compared to PLDA 

classifiers in the RCC data. Due to the failure of sparse PLDA to select a feature subset, the prediction 

accuracies were nearly identical for both non-sparse and sparse classifiers. The application of a power 

transformation had a negligible effect on the prediction accuracies. 

    DISCUSSION 

Microarrays and RNA sequencing, two widely utilized high-throughput technologies, play significant roles 

in genomic research for diverse objectives, including differential expression analysis, biomarker and gene 

discovery, class discovery, cell sub-type classification, and molecular diagnosis and disease 
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classification.
4,11,16-21

 This study specifically focuses on disease classification using PLDA and NBLDA 

classifiers, which are specifically designed for RNA-Seq data. This study has contributed to the literature by 

providing a fair comparison of discrete classifiers from various RNA-sequencing datasets (i.e., miRNA and 

mRNA samples) under similar modeling conditions. Also, the datasets utilized in this study encompassed 

samples and features spanning from small to large. Consequently, our findings highlight the impact of 

varying the number of samples and features on classification accuracies using multiple datasets 

simultaneously. Furthermore, this study introduces a novel workflow for the classification of RNA-

Sequencing data. In this workflow, testing samples undergo preprocessing using parameters derived from the 

training set rather than those of the testing set (Figure 1). This approach was initially proposed in our 

previous study, and has significantly influenced the way scientists approach RNA-Seq classification, leading 

them to implement similar workflow in future studies.
6
  

Our findings demonstrate that NBLDA consistently outperforms PLDA across all utilized datasets. The 

results unequivocally establish the superiority of NBLDA over PLDA, particularly in the presence of high 

overdispersion within the data. The findings of this study are consistent with several previously published 

studies.
7,22,23

 However, it remains unclear whether these related papers employed the same workflow utilized 

in this paper. Therefore, comparing the classification accuracies in numbers between these papers and our 

current study is not feasible, even though their conclusions may align similarly. 

Overdispersion is a significant factor that profoundly impacts the predictive accuracy of fitted models. 

Within the three datasets examined, the Alzheimer’s disease dataset exhibited a mild-to-moderate level of 

overdispersion, while the remaining two datasets, namely RCC and cervical cancer, demonstrated a 

considerably high degree of overdispersion. As expected, in Alzheimer disease dataset, the application of 

power transformation yielded similar prediction accuracies for PLDA and NBLDA. However, surprisingly, 

the performance of the PLDA classifier was notably lower when power transformation was not applied. The 

evident beneficial impact of power transformation on the prediction accuracies of the Alzheimer’s disease 

dataset highlights its efficacy. 

This study employed the DESeq median ratio normalization on the raw counts.
11

 Despite RNA-Seq 

technology generating less noisy data compared to microarrays, normalization remains crucial in the 

classification of RNA-Seq data. Previous studies have consistently demonstrated the beneficial effects of 

normalization methods, particularly in differential expression analysis.
12,24

 However, its impact on the model 

performances may be limited in the case of disease classification studies. In this study, a comparison of 

prediction accuracies under different normalization techniques was not conducted; however, a 

comprehensive comparison of other normalization techniques in disease classification can be found in the 

related paper.
25

  

PLDA is an efficient sparse classifier that demonstrates the ability to select a subset of features 

associated with the response variable. This advantageous characteristic allows PLDA to eliminate redundant 

features from the model, making it suitable for identifying differentially expressed genes among distinct 

disease subsets. Contrarily, NBLDA is not inherently a sparse classifier as it incorporates all features into the 

model. Nevertheless, one can employ various feature selection methods to identify differentially expressed 

features and subsequently integrate them into the NBLDA classifier.
1,10,11

 The utilization of a specific set of 

differentially expressed genes has the potential to enhance the prediction accuracy of the fitted model. 

Moreover, it is plausible to extend NBLDA into a sparse classifier by incorporating an intrinsic feature 

selection criterion. However, we regard this topic as a subject for future research and leave it unexplored in 

the current context. 

RNA-Seq data generally exhibit an abundance of zeros, which can be attributed to zero-inflation. The 

current body of literature suggests the utilization of zero-inflated mixture distributions for the classification 

analysis of RNA-Seq data. Two recent techniques in this regard are the zero-inflated Poisson logistic 

discriminant analysis, introduced by Zhou et al., and the zero-inflated negative binomial logistic discriminant 
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analysis, proposed by Zhu et al.
26,27

 Although the zero-inflated classifiers were not employed in our study, it 

is worth considering the comparison of NBLDA and PLDA with zero-inflated models. 

Recently, there have been significant advancements in the field of machine learning and artificial 

intelligence (AI), leading many researchers to employ these techniques in genomic research.
28-30

 Machine 

learning and AI-based approaches have been increasingly utilized for the purposes mentioned above. Unlike 

methods such as PLDA and NBLDA, which rely on specific underlying probability distributions, these 

techniques are not restricted by such assumptions. Consequently, machine learning and AI-based methods 

offer greater flexibility in the classification of RNA-sequencing data. Moreover, conducting a comprehensive 

simulation study for a fair comparison could provide valuable insights into the prediction accuracy of these 

methods in the context of RNA-Seq studies. 

This study demonstrated the viability of PLDA and NBLDA classifiers, along with their respective 

extensions, for the classification of RNA-sequencing data. In conclusion, these two novel and widely-used 

techniques exhibit great promise and demonstrate strong performance under specific conditions. 

    CONCLUSION 

PLDA and NBLDA models represent 2 innovative and promising techniques employed for the classification 

of RNA-Seq data. These methods are based on discrete distributions such as Poisson and negative binomial, 

enabling them to preserve the count data structure while fitting the models. Consequently, PLDA and 

NBLDA classifiers exhibit reduced susceptibility to information loss that may occur during the transforma-

tion of data into a continuous space. The performance of these models is influenced by the extent of overdis-

persion present in the data. When faced with mild-to-moderate overdispersion, the application of a power 

transformation generally yields a positive impact on model performance. However, in the case of high 

overdispersion, which is a common issue encountered in RNA-sequencing data, the effect of power trans-

formation becomes limited and only marginally alters model performance. In conclusion, it is advisable to 

employ the NBLDA model when high overdispersion is observed in the data. Conversely, when slight 

overdispersion is present, it is reasonable to utilize the Poisson model with sparse extension on power-

transformed data. This approach offers the advantage of reduced complexity and the ability to employ a 

smaller subset of all features. 
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