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ABSTRACT Objective: Many of the machine learning classifica-

tion algorithms are not robust against unbalanced classes and result 
in poorly accurate and biased models. One way to address class 

imbalance is to assign weights to classes. This article proposes a 

new class-weighting approach to improve the classification prob-
lem when there is an imbalance between two class. Material and 

Methods: The performances of the new formulation were com-

pared with the previously proposed Inverse of Square Root of 
Number of Samples, effective number of samples weighting formu-

la and unweighted Random Forest solutions. A simulation study 

was performed using performances of 3 imbalance rates (0.10, 0.20, 

0.30), 6 different sample sizes (250, 300, 350, 400, 450, 500) and 4 

different methods with 1,000 repetitions. Additionally, the methods 
were analyzed on the lung cancer dataset with 39 samples in the 

minority group and with 270 samples in the majority group. Re-

sults: Experimental results demonstrated that our proposed 
weighting formula, least number of ratio and range multiplier, per-

formed equal to or better solution than Inverse of Square Root of 

Number of Samples in both simulations and real data. Generally, 
minority class accuracy and balanced accuracy of our formulation 

were either very close to or higher than that of Inverse of Square 

Root of Number of Samples. Conclusion: The new formulation 
provided accuracy estimates of the 2 classes in a balanced way for 

each sample size and for each imbalance rate. Additionally, as the 

sample size increased from 250 to 500, stable decreasing weights 
could be obtained for the patient and control groups. 
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ÖZET Amaç: Makine öğrenimi sınıflandırma algoritmalarının 

birçoğu, dengesiz sınıflara karşı güçlü değildir ve doğruluğu düşük 
ve yanlı modeller ile sonuç verir. Sınıf dengesizliğini çözmenin bir 

yolu, sınıflara ağırlık atamaktır. Bu makale, 2 sınıf arasında bir 

dengesizlik olduğunda sınıflandırma problemini iyileştirmek için 
yeni bir sınıf ağırlıklandırma yaklaşımı önermektedir. Gereç ve 

Yöntemler: Yeni formülasyonun performansları, daha önce öneri-

len Örnek Sayısının Karekökünün Tersi, etkin örnek sayısı 
ağırlıklandırma formülü ve ağırlıklandırılmamış Random Forest 

çözümleri ile karşılaştırılmıştır. Üç dengesizlik oranı (0,10, 0,20, 

0,30), 6 farklı örneklem büyüklüğü (250, 300, 350, 400, 450, 500) 

ve 4 farklı yöntemin 1.000 tekrarlı performansları kullanılarak si-

mülasyon çalışması yapılmıştır. Ayrıca yöntemler azınlık grubunda 
39 örnek ve çoğunluk grubunda 270 örnek ile akciğer kanseri veri 

setinde analiz edilmiştir. Bulgular: Deneysel sonuçlar, önerilen 

ağırlıklandırma formülümüz olan en az sayı oranı ve açıklık çarpa-
nının hem simülasyonlarda hem de gerçek veride Örnek Sayısının 

Karekökünün Tersi’ninkine eşit veya daha iyi bir performans gös-

terdiğini belirtmiştir. Genel olarak formülümüzün azınlık sınıfı doğ-
ruluğu ve dengeli doğruluğu, Örnek Sayısının Karekökünün Tersi 

formülünün doğruluğuna çok yakın ya da daha yüksektir. Sonuç: 

Yeni formülasyon, her örneklem büyüklüğü ve her bir dengesizlik 
oranı için 2 sınıfın doğruluk tahminlerini dengeli bir şekilde sağla-

mıştır. Ayrıca örneklem büyüklüğü 250’den 500’e çıkarıldığında 

hasta ve kontrol grupları için tutarlı azalan ağırlıklar elde edilebil-
miştir. 
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In a problem that considers the classification of data samples in two groups, class imbalance occurs es-

pecially when the sample size of the patient group is less than the sample size of the healthy group.
1
 Thus, 

the dataset contains two types of samples: minority and majority. In most problems, the minority class is the 

positive group. Based on the studies, it can be said that the class imbalance problem arises frequently in clas-

sification problems in the field of health.
2
 In a sample where most patients are healthy and the detection of 

the disease is critical, the most of healthy patients can be identified as negative class. Learning from these 

unstable datasets can be overwhelming, specifically when analysing with big data. This causes the minority 

class to be underrepresented in the dataset and the trained classification models often produce biased predic-

tions in favor of the majority class.
3
 

Therefore, modeling from imbalanced data sets reveals great difficulties for traditional classification al-

gorithms. Imbalanced class problem occurs naturally in many situations where the positive class has smaller 

samples such as disease diagnosis, fault detection, computer security, fraud detection and image recogni-

tion.
4-8

 

Class imbalance is generally measured by the imbalance ratio (IR)=M/m, where m and M are observa-

tions size in the positive and negative group, respectively. Based on the value of IR, the imbalanced datasets 

are separated into 3 groups: datasets with high imbalance (IR is higher than 9), datasets with moderate im-

balance (IR is between 3 and 9), datasets with low imbalance (IR is between 1.5 and 3).
9
 At the same time, 

methods for solving class imbalance in machine learning are divided into 3 types: data-level techniques, al-

gorithm-level techniques, and hybrid techniques. Data level methods try to reduce the imbalance level with 

the help of different data sampling techniques. Algorithm-level techniques to address class imbalance, often 

done with a weight or cost scheme, involve modifying the base learner or its output to reduce bias in favor of 

the majority group. Lastly, hybrid techniques assemble both sampling and algorithmic techniques strategi-

cally.
1,10

 

In resampling, the number of samples is arranged straightly by oversampling (adding repetitive data) for 

the minority class or undersampling (removing the data) for the majority class, or both. In cost-sensitive re-

weighting, the loss function was affected by appointing comparatively higher costs to samples in the small 

class. Mostly, it has been proposed to appoint sample weights inversely proportional to the class frequency. 

This procedure has been widely used.
11

 

In this study, a new weighting formula was developed to balance the classification performance of 

classes. The performances of the new formulation will be compared with the Inverse of Square Root of 

Number of Samples (ISNS), effective number of samples (ENS) weighting formula and unweighted Random 

Forest solutions. 

    MATERIAL AND METHODS 

DATA-LEVEL METHODS 

Data-level methods for considering class imbalance consist of oversampling and undersampling. These 

methods modify the training distributions of mislabeled samples or anomalies to reduce the imbalance level 

or noise. Basically, random samples are excluded from the majority group in random undersampling (RUS), 

whereas in random oversampling (ROS) random samples in the minority group are amplified.
1
 

OVERSAMPLING 

ROS is the process of multiplying existing minority samples to expand the size of a minority class. In this 

method, additional samples are added to the minority class to balance the data set (Figure 1). Oversampling 

successfully balances the input dataset and ensures maximum accuracy by multiplying the minority class 

samples until both classes have an equal number. Oversampling causes the training time to increase due to 

the increase in the size of the training set, and it has also been demonstrated to lead to overfitting.
1
 To over-
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come this problem, the Synthetic Minority Oversampling Technique (SMOTE) method, which creates “syn-

thetic” samples instead of oversampling with replacement, has been proposed.
12

 SMOTE randomly selects a 

minority class sample and starts by randomly finding its k nearest minority class neighbors. 

 

 
 

FIGURE 1: Representation of oversampling.13 

 

UNDERSAMPLING 

In this technique, majority class samples are decreased to balance the data set. RUS intentionally excludes 

data and reduces the overall amount of information the model can learn (Figure 2). Undersampling success-

fully balances the input dataset, ignoring the remaining samples available, only considering specific samples 

in the majority class that meet the number equal to that of the minority class.
13

 

 

 
 

FIGURE 2: Representation of undersampling.13 

 

CLASS WEIGHTING METHOD 

Oversampling reveals duplicate samples, causing overfitting in the model, while undersampling disqualifies 

a certain number of samples. Another solution to overcome problems such as overfitting and underfitting is 

to play with the loss function. It is a good option to assign a higher weight to the loss faced by instances as-

sociated with small classes to make up for the class imbalance.
14

  

Various weighting methods are available to calculate the class weight. In this study, Random Forest 

classification performances will be compared on the proposed weighting formula [Least Number of Ratio 

and Range Multiplier (LNR+RM)], ISNS weighting formula, ENS weighting scheme and unweighted 

data. 
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ISNS 

In this weighting formula, samples are weighted as the inverse of the Square Root of the class frequency for 

the class they belong to. 

         
 

                             
 

 

ENS 

The basis of this method is to represent each sample not by a single point, but by a small neighboring region, 

because the exstra profit of a newly added data point decreases as the number of samples increases. ENS is 

defined as the sample size, and the simple formulation of the ENS is as below: 
 

  
     

 
 

     
      

     
 

   
   

   
 

where N: Sample size in the class, ENS: Number of effective Samples, W: Sample weight.
11

 

 

PROPOSED CLASS WEIGHTING FORMULA 

LNR+RM 

The weighting formula suggested in the study is as follows: 

WLNR+RM = 
       

        
   

 

  
   

 

 
 
         

 
 ,  rmaj=0.90, 0.80, 0.70 

 

Here; nj: Sample size of the relevant class, n: Total sample size, class: Number of classes, rmaj: Ratio of 

majority class (0.90, 0.80, 0.70, respectively), nmaj: Sample size of the majority class, nmin: Sample size of 

the minority class. 

The first term of the weight formula we developed is the logarithm of the ratio of the total sample size 

to the jth class sample size, and the second term is adjusted to be a factor of the range of class sizes. The 

logarithm transformation in the first term of the formula is a data transformation method that changes each 

variable x with a Log(x). When the original numerical data do not fit the symmetrical curve, we take the 

logarithm of this data to bring it closer to “normal”, so the analysis findings of this data will be more valid. 

Namely, the logarithm transform reduces or eliminates the skewness of our original data. Therefore, if nj is 

close to n, the logarithm of the ratio N/nj will be closer to 0. If nj is smaller than n, the first term of the 

weight will most likely be greater than 1 (Ln (n/nj)>1) and will increase proportionally to this ratio. The co-

efficient before Ln is a constant that provides balance by slightly decreasing the weight to be obtained in 

each IR proportionally to rmaj. 

The second term of the formulation (
 

 
 
         

 
) is added as a multiplier depending on the range of 

the class size for both of them.  
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PERFORMANCE EVALUATION CRITERIA 

The classical general accuracy metric is not convenient to evaluate classification performance in case of im-

balanced class because the positive class occupies lesser importance in this measure than the negative class.
8
 

Therefore, Matthews correlation coefficient (MCC), balanced accuracy, accuracy, and geometric mean (G-

mean) were used as performance evaluation measures in this study.
15 

G-MEAN  

The G-mean formula measures performance by merging both true positive rate (TPR) and true negative rate 

(TNR) metrics using the square root of products. The G-mean is a measure that detects the balance between 

classification performances in both classes. Although negative cases are correctly classified, a low G-mean is 

indicative of weak performance in classifying positive cases.
16

 Confusion matrix for formulation is as fol-

lows: 
 

 Predicted Condition 

A
ct

ua
l  

C
on

di
tio

n  Positive Negative 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

Sensitivity=
  

     
     

Specificity=
  

     
     

G-mean   Sensitivity Specificity 

 

BALANCED ACCURACY 

This measure merges TPR and TNR values to calculate a measure that is more susceptible to the minority 

group. If a classifier performs equally well in both classes, balanced accuracy coincides with conventional 

accuracy. Conversely, if the high value of conventional accuracy is due to the classifier uses the majority 

class distribution, the balanced accuracy will be smaller than accuracy. 

                   
 

 
                          

 

MCC 

The MCC is a special form of the coefficient ϕ phi.
15

 F1 score and accuracy can be inaccurate in imbalanced 

datasets because they do not take into account the ratio between positive and negative groups. A classifier 

must yield accurate predictions on both the majority of negative cases and the majority of positive cases, re-

gardless of their ratio in the entire dataset. Therefore, the MCC provided more informative and accurate 

scores than the other 2 metrics.
16

  

The MCC ranges from -1 to 1, that here -1 represents a completely incorrect binary classifier whereas 1 

represents the opposite. 
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OVERALL ACCURACY 

This metric is the ratio of the total true positive and true negative results to the total number of observations 

found in the study. In the case of unbalanced datasets, using accuracy to evaluate the performance of the 

classification model can be misleading. The overall accuracy value ranges from 0 to 1. If this value is close 

to 1, it represents high performance.
17

 

Accuracy=
     

           
 

STATISTICAL ANALYSIS 

The data were analyzed using the R (Version 4.2.2) programming language. The data were analyzed over 

1,000 iterations, and the 10-fold cross validation was used as the data splitting method. Accuracy, MCC, G-

mean and balanced accuracy were utilized as performance metrics. In the R programming language, RWeka, 

randomForest, caret and Metrics libraries were used. 

DATA AND APPLICATIONS 

Real Dataset 

As the real data set, lung cancer data collected from the online lung cancer prediction system website via the 

kaggle website
1
 was used. The data set has a total sample size of 309, with 39 samples in the minority class 

and 270 samples in the majority class. The original dataset consisted of 16 variables (including gender, 

smoking, age yellow fingers, allergy, wheezing, alcohol, coughing, anxiety, peer_pressure, chronic disease, 

swallowing difficulty, chest pain fatigue, shortness of breath, lung cancer). 

Simulation Study 

Correlations between dependent and independent variables were defined as (0.30-0.65) for all distributions. It is 

assumed that there is a weak or no relationship between the independent variables with the range of (0.08-

0.25). Six independent variables, together with the class variable, were first derived from the multivariate nor-

mal distribution using the “MASS” package “mvrnorm” functionin R Studio software, taking into account the 

relevant correlation structures.
18

 The mean vector of the variables was taken into account as µ (10, 5, 2, 16, 20, 

30). Continuous independent variables derived from the normal distribution were then transformed into binary 

variables (0 and 1) by taking into account the different cut-off points (0.20, 0.25 and 0.30) of the data distribu-

tion with the help of the “mutate” function.
19

 Class assignment was made to the class variable with the “mu-

tate” function, considering the class imbalance rates of 9, 4 and 2.33. For each of these three class imbalances, 

datasets with sample sizes of 250, 300, 350, 400, 450 and 500 were created. Classification performances were 

obtained by applying Random Forest classification method to the datasets together with unweighted, ISNS, 

ENS and our newly developed weighting formula (LNR+RM). A total of 72 different scenario combinations 

were analyzed with 1,000 repetitions each with 4 different classification methods in each of 18 scenarios for 3 

class IRs (9, 4, and 2.33) and 6 different sample sizes (250, 300, 350, 400, 450, 500). 

Declaration 

In this manuscript, there is no research involving “Human beings”. The research was conducted in accor-

dance with the principles set of the Helsinki Declaration 2008. Informed consent was not obtained as there 

were no subjects in the study. Accordingly, approval by the ethical board is not needed for this manuscript. 

    RESULTS 

The class weights of each method for each sample size in each class distribution are given in Table 1. 

                                                           
1https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer 

https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
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TABLE 1: Class weights in different samples for methods. 
 

Distribution Sample size 

Method 

ISNS ENS LNR+RM 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

90%-10% 
(IR=9) 

250 0.667 2.000 0.702 6.254 0.477 2.389 

300 0.609 1.826 0.585 5.222 0.474 2.220 

350 0.563 1.690 0.502 4.482 0.472 2.088 

400 0.527 1.581 0.439 3.926 0.471 1.982 

450 0.497 1.491 0.390 3.493 0.469 1.894 

500 0.471 1.414 0.351 3.145 0.468 1.820 

80%-20% 
(IR=4) 

250 0.707 1.414 0.790 3.145 0.458 1.405 

300 0.645 1.291 0.658 2.624 0.452 1.317 

350 0.598 1.195 0.564 2.251 0.447 1.248 

400 0.559 1.118 0.494 1.970 0.443 1.192 

450 0.527 1.054 0.439 1.752 0.440 1.146 

500 0.500 1.000 0.395 1.577 0.437 1.107 

70%-30% 
(IR=2.33) 

250 0.756 1.155 0.902 2.101 0.445 0.981 

300 0.690 1.054 0.752 1.752 0.434 0.923 

350 0.639 0.976 0.645 1.502 0.425 0.878 

400 0.598 0.913 0.564 1.315 0.418 0.842 

450 0.563 0.861 0.502 1.169 0.412 0.812 

500 0.535 0.816 0.452 1.053 0.407 0.786 

Real dataset 309 0.609 1.601 0.585 4.026 0.467 1.850 
 

Class 1: Class with large sample; Class 2: Class with low sample; ISNS: Inverse of Square Root of Number of Samples; ENS: Effective number of samples; LNR+RM: 
Least number of ratio and range multiplier; IR: Imbalance ratio. 

 

In Table 2, the results of the methods in different samples are given for the simulated dataset with a dis-

tribution of IR=9. In the 250 sample dataset, ISNS and LNR+RM methods gave similar results, while the 

ENS method performed very poorly. On datasets with 300, 350, 400, 450 and 500 samples, all three methods 

had similar performance. 

 

TABLE 2: Results of the methods for the simulated dataset with IR=9 distribution. 
 

Sample 
Size 

Method 
Performance Measures 

Accuracy1 Accuracy2 Accuracy MCC G-mean Balanced Accuracy 

250 

Unweighted 0.999 0.274 0.927 0.502 0.523 0.137 

ISNS 0.834 0.675 0.818 0.371 0.751 0.282 

ENS 0.361 0.675 0.392 0.023 0.493 0.122 

LNR+RM 0.827 0.674 0.812 0.362 0.747 0.279 

300 

Unweighted 0.999 0.362 0.935 0.573 0.601 0.181 

ISNS 0.806 0.767 0.802 0.396 0.786 0.309 

ENS 0.791 0.769 0.789 0.381 0.780 0.304 

LNR+RM 0.799 0.768 0.796 0.389 0.783 0.307 

350 

Unweighted 0.993 0.442 0.938 0.599 0.662 0.220 

ISNS 0.817 0.829 0.818 0.449 0.823 0.338 

ENS 0.806 0.829 0.808 0.435 0.817 0.334 

LNR+RM 0.811 0.829 0.813 0.441 0.820 0.336 

400 

Unweighted 0.991 0.463 0.939 0.603 0.677 0.229 

ISNS 0.821 0.850 0.824 0.468 0.836 0.349 

ENS 0.806 0.850 0.810 0.449 0.828 0.342 

LNR+RM 0.814 0.850 0.818 0.459 0.832 0.346 

450 

Unweighted 0.988 0.514 0.941 0.624 0.712 0.254 

ISNS 0.838 0.867 0.840 0.500 0.852 0.363 

ENS 0.823 0.867 0.827 0.481 0.845 0.357 

LNR+RM 0.831 0.867 0.835 0.491 0.849 0.360 

500 

Unweighted 0.984 0.559 0.942 0.639 0.742 0.275 

ISNS 0.845 0.880 0.849 0.519 0.862 0.372 

ENS 0.833 0.880 0.837 0.502 0.856 0.366 

LNR+RM 0.841 0.880 0.845 0.514 0.860 0.370 
 

Accuracy1: Accuracy for majority class; Accuracy2: Accuracy for minority class; MCC: Matthews correlation coefficient; G-mean: Geometric mean; ISNS: Inverse of 
Square Root of Number of Samples; ENS: Effective number of samples; LNR+RM: Least number of ratio and range multiplier. 
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In Table 3, the results of the methods in different samples are given for the simulated dataset with IR=4 

distribution. In the 250 sample dataset, ISNS had the best performance, while LNR+RM was the second best 

performing method. In the 300 sample dataset, LNR+RM had the best performance, while ISNS was the 

second best performing method. In the datasets with 350, 400, 450, and 500 samples, the LNR+RM method 

provided the best improvement in the performance measure of the low-sampling class, while it had similar 

performance with ISNS when general criteria were considered. 

 

 

TABLE 3: Results of the methods for the simulated dataset with IR=4 distribution. 
 

Sample 
Size 

Method 
Performance measures 

Accuracy1 Accuracy2 Accuracy MCC G-mean Balanced Accuracy 

250 

Unweighted 0.988 0.315 0.853 0.466 0.557 0.155 

ISNS 0.713 0.733 0.717 0.369 0.723 0.262 

ENS 0.607 0.758 0.637 0.293 0.678 0.230 

LNR+RM 0.661 0.753 0.680 0.336 0.705 0.249 

300 

Unweighted 0.987 0.331 0.857 0.483 0.572 0.164 

ISNS 0.729 0.790 0.741 0.428 0.759 0.288 

ENS 0.327 0.818 0.425 0.126 0.514 0.134 

LNR+RM 0.722 0.811 0.740 0.438 0.765 0.293 

350 

Unweighted 0.985 0.342 0.857 0.483 0.581 0.169 

ISNS 0.737 0.792 0.748 0.439 0.764 0.292 

ENS 0.252 0.892 0.380 0.139 0.474 0.112 

LNR+RM 0.719 0.818 0.739 0.441 0.767 0.294 

400 

Unweighted 0.977 0.425 0.866 0.528 0.644 0.207 

ISNS 0.763 0.788 0.768 0.462 0.775 0.300 

ENS 0.671 0.835 0.704 0.410 0.749 0.280 

LNR+RM 0.735 0.826 0.753 0.463 0.779 0.303 

450 

Unweighted 0.978 0.437 0.870 0.542 0.654 0.214 

ISNS 0.758 0.828 0.772 0.489 0.793 0.314 

ENS 0.720 0.852 0.746 0.468 0.783 0.307 

LNR+RM 0.739 0.838 0.759 0.477 0.787 0.310 

500 

Unweighted 0.974 0.508 0.880 0.587 0.703 0.247 

ISNS 0.779 0.870 0.797 0.544 0.823 0.339 

ENS 0.742 0.880 0.770 0.512 0.808 0.327 

LNR+RM 0.767 0.875 0.789 0.535 0.819 0.336 

 
Accuracy1: Accuracy for majority class; Accuracy2: Accuracy for minority class; MCC: Matthews correlation coefficient; G-mean: Geometric mean; ISNS: Inverse of 
Square Root of Number of Samples; ENS: Effective number of samples; LNR+RM: Least number of ratio and range multiplier. 

 

 

In Table 4, the results of the methods in different samples are given for the simulated dataset with a dis-

tribution of IR=2.33. In the 250-sampled dataset, LNR+RM method provided the best improvement in the 

performance criterion of the low-sampling class, while ISNS had the best performance based on the general 

criteria. In the dataset with 300 and 350 samples, the LNR+RM method provided the best improvement in 

the performance criterion of the low-sampling class, while it had similar performance with ISNS based on 

the general criteria. In the 400-sampled dataset, LNR+RM had the best performance, followed by ENS and 

ISNS, respectively. In the dataset with 450 samples, ISNS had the best performance, while LNR+RM and 

ENS method had similar results. In the dataset with 500 samples, LNR+RM and ENS methods provided the 

best improvement in the performance criterion of the low-sampling class, while ISNS had the best perform-

ance based on the general criteria. 
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TABLE 4: Results of methods for a simulated dataset with IR=2.33 distribution. 
 

Sample 
Size 

Method 
Performance Measures 

Accuracy1 Accuracy2 Accuracy MCC G-mean Balanced Accuracy 

250 

Unweighted 0.939 0.538 0.817 0.542 0.711 0.253 

ISNS 0.745 0.840 0.774 0.542 0.791 0.313 

ENS 0.686 0.857 0.738 0.499 0.767 0.294 

New formula 0.687 0.856 0.738 0.499 0.767 0.294 

300 

Unweighted 0.953 0.624 0.854 0.638 0.771 0.297 

ISNS 0.769 0.850 0.793 0.576 0.809 0.327 

ENS 0.739 0.886 0.783 0.576 0.809 0.327 

New formula 0.760 0.869 0.793 0.583 0.813 0.330 

350 

Unweighted 0.936 0.653 0.851 0.631 0.782 0.306 

ISNS 0.767 0.905 0.809 0.621 0.833 0.347 

ENS 0.759 0.909 0.804 0.616 0.831 0.345 

New formula 0.761 0.905 0.803 0.614 0.829 0.344 

400 

Unweighted 0.964 0.737 0.896 0.746 0.843 0.355 

ISNS 0.794 0.896 0.824 0.642 0.843 0.356 

ENS 0.773 0.934 0.821 0.653 0.850 0.361 

New formula 0.778 0.933 0.825 0.658 0.852 0.363 

450 

Unweighted 0.959 0.799 0.910 0.783 0.875 0.383 

ISNS 0.828 0.920 0.855 0.700 0.872 0.380 

ENS 0.780 0.941 0.828 0.666 0.857 0.367 

New formula 0.785 0.941 0.832 0.672 0.859 0.369 

500 

Unweighted 0.960 0.813 0.916 0.795 0.883 0.390 

ISNS 0.844 0.926 0.869 0.725 0.884 0.391 

ENS 0.787 0.947 0.835 0.679 0.863 0.373 

New formula 0.812 0.947 0.853 0.706 0.877 0.384 

 
Accuracy1: Accuracy for majority class; Accuracy2: Accuracy for minority class; MCC: Matthews correlation coefficient; G-mean: Geometric mean; ISNS: Inverse of 
Square Root of Number of Samples; ENS: Effective number of samples. 

 

 

Using the Information Gain and Gain Ratio variable significance tests, the importance of 15 independ-

ent variables in the dataset for the outcome variable was checked. As a result of the 2 tests, the most impor-

tant variables in common were allergy, alcohol consuming, swallowing difficulty, wheezing, coughing, chest 

pain, peer pressure, yellow fingers, anxiety and fatigue. Variable significance results are given in Figure 3. 

Gender, age, smoking, chronic disease and shortness of breath, which are less important than other variables 

in the dataset, were excluded from the analysis. 

 

 

 
 

FIGURE 3: Information Gain and Gain Ratio variable importance test results for lung cancer. 
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Considering the results of the methods for the Lung Cancer dataset in Table 5, the best performance was 

achieved with the ISNS method. This method was followed by LNR+RM, ENS and unweighted RF meth-

ods, respectively. 

 

TABLE 5: Results of methods for the lung cancer dataset. 
 

Sample 
size 

Method 
Performance measures 

Accuracy1 Accuracy2 Accuracy MCC G-mean Balanced Accuracy 

309 

Unweighted 0.948 0.564 0.899 0.529 0.731 0.267 

ISNS 0.934 0.732 0.908 0.619 0.827 0.342 

ENS 0.941 0.599 0.989 0.539 0.751 0.282 

New formula 0.940 0.675 0.906 0.592 0.796 0.317 

 
Accuracy1: Accuracy for majority class. Accuracy2: Accuracy for minority class; MCC: Matthews correlation coefficient; G-mean: Geometric mean; ISNS: Inverse of 
Square Root of Number of Samples; ENS: Effective number of samples. 

 

 

    DISCUSSION 

In this study, a new formulation was proposed for the class-weighting methods used in solving the class 

imbalance problem. The ISNS method followed by our new proposal, LNR+RM weighting solution, 

provided the best performance according to both our 1,000 iterations of simulation and real data results. 

As the number of samples increased, the weighting method performances approached the unweighted 

performance, so n=1,000 was not included in the simulation scenario, especially since the class imba l-

ance situation was insignificant in the case of 1,000 samples. Considering the accuracy of the low-

sampling class (accuracy 2) and balanced accuracy, unweighted Random Forest gave the poorest per-

formance. 

A study proposed a general version of the SMOTE oversampling technique that involves a feature 

weighting process that considers relevancy/redundancy.
20

 Their proposal utilizes the weighted Minkowski 

distance for exploring the K nearest objects of the minority class. According to the results of 42 real datasets, 

their suggested feature-weighted-SMOTE method outperformed the other SMOTE types on both high and 

low-dimensional datasets. 

The classification of data with class imbalance attracted attention in medical application as well. Zhu et 

al. introduced a novel approach by allocating individual weights for each class rather than a single weight.
21

 

Their proposed method increased the accuracy of the classifier. 

The class-weighting method has a different approach compared to pre-existing sampling methods. After 

proposed to consider the ENS instead of proportional frequency, designed a loss sensitive to label distribu-

tion to encourage larger margins for minority classes.
11,13,22

 Developed a model in which, instead of generat-

ing new samples or ignoring existing samples, they fed composite inputs of the inverse of their true inci-

dence. In a study, 2 class weight ratio plans, namely, INS and ISNS, were searched on the loss function to 

detect the best technique to handle imbalanced classes.
23

 Based on the results, weighting the loss function 

with INS method produced a slightly better performance compared to ISNS. All three methods were able to 

improve the F1 score of the minority class from 0.09 to about 0.78-0.81. 

The main opinion of re-weighting methods is to appoint weights for various training samples. In an im-

balanced dataset, a basis strategy is to weight samples according to the inverse of class size or use inverse 

square root of class frequency.
24-26

 Another study proposed aa easy but efficient loss, called equalization 

loss, to handle the problem of long-tailed rare categories by simply disregarding the gradients for rare cate-

gories.
27

 In a study, it has been found that using the ISNS provided nearly the highest F1 score and accuracy 
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and is therefore accepted as the best weighting method.
28

 His study demonstrated that the ISNS weighting 

formula provided the highest accuracy on the test dataset compared to INS and ENS.  

Looking at our performance results; ISNS and LNR+RM gave the highest performances, followed by 

the ENS, and the unweighted RF, respectively. However, it was observed that the ENS gave lower accuracy 

and unbalanced performance between the accuracies of the 2 classes, especially in the sample size from 250 

to 400. In line with our findings, in Table 2 of, the classification error rates calculated for the CIFAR-10 data 

(with a sample size of 10) and the CIFAR-100 data (with a sample size of 100) were shown for each of the 

IRs of ENS ranging from 1 to 200 (1, 10, 20, 50, 100, 200).
11

 For example; while the classification error in 

the CIFAR-10 data was 16.40 at an imbalance rate of 20, this value was found to be 48.57 for the CIFAR-

100 data. For each imbalance rate, the classification errors in the data with 10 samples were obtained from 
 

 
  

to 
 

 
 times smaller than the classification errors in the data with 100 samples. On the other hand, for higher 

training samples (between 5,089 and 8,142); it was shown that the classification error steadily decreases as 

the number of samples increases. In our simulation results, ENS became stable when the sample size equal to 

or bigger than 400. 

Our formulation, LNR+RM, showed a steady decrease for the patient and control groups as the sample 

size increased from 250 to 500 in experiments with 1,000 replicates. For 500 samples and IR=9 imbalance 

condition, the weight of the patient group was 1.820 and that of the control group was 0.468. While these 

weights were 1.414 and 0.471 respectively in ISNS, they were 3.145 and 0.351 in ENS. Especially, the fact 

that the weight of the control group in ENS was very low and far from the that of patient group made the 

formula weak. Additionally, while the patient/control group weights of ENS for 500 samples in an IR of 2.33 

were 1.053/0.452, this difference between the weights of the 2 groups was higher than both our formula 

(0.786/0.407) and the ISNS (0.816/0.535), although the IR decreased. The balance of decrease and increase 

in LNR+RM weight in both groups was achieved by adding the ratio of majority class ratio (          to 

the denominator as a multiplier.  

    CONCLUSION 

As a result, with our new formula LNR+RM, the accuracy estimates of the 2 classes were obtained in a bal-

anced way for each sample size and for each imbalance rate. Generally, minority class accuracy and bal-

anced accuracy of LNR+RM were either very close to or higher than that of ISNS. These results showed that 

the LNR+RM method gives consistent results under all conditions and can be used as a new method in the 

literature, in addition to other methods. As a next study plan, the performances of LNR+RM in different cor-

relation and variable structures can be evaluated with other methods. 
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